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ABSTRACT

It is well known that the Ensemble Kalman Filter (EnKF) requires updating each ensemble

member with perturbed observations in order to produce the proper analysis-error covari-

ances. While increased accuracy in a mean square sense may be preferable in many appli-

cations, less accuracy might be preferable in other applications, especially if the variables

being assimilated obey certain conservation laws. In land data assimilation, for instance, the

update in soil moisture often produces a water balance residual, in the sense that the input

water is not equal to output water. This study shows that suppressing the perturbation of

observations in the EnKF and the Weakly Constrained Ensemble Kalman Filter significantly

improves the water balance residuals without significantly increasing the state errors.
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1. Introduction

Shortly after Evensen (1994) proposed an ensemble technique for solving the Kalman

Filter equations, Burgers et al. (1998) and Houtekamer and Mitchell (1998) showed that

the filter proposed by Evensen (1994) underestimates analysis errors. To remedy this short-

coming, Burgers et al. (1998) and Houtekamer and Mitchell (1998) proposed perturbing the

observations in a manner consistent with their error statistics. For large ensemble sizes, this

procedure produces an analysis ensemble with the correct covariance matrix. The resulting

solution of the Kalman Filter equations is now called the Ensemble Kalman Filter (EnKF).

Unfortunately, the addition of random errors on top of pre-existing observation errors

adds an additional source of sampling errors. Whitaker and Hamill (2002) showed that

this additional source of sampling error increases the probability that the analysis-error

covariance will be under-estimated. Several ensemble-based solutions to the Kalman Filter

equations that avoid perturbed observations were proposed (Anderson 2001; Bishop et al.

2001; Whitaker and Hamill 2002), which were subsequently shown to belong to a family of

solutions known as the square root filter (Tippett et al. 2003).

Interestingly, Burgers et al. (1998) found the state errors of perturbed and non-perturbed

EnKF schemes were almost indistinguishable (see Figure 1 in Burgers et al. 1998). Also,

before the underestimation of analysis errors was noted by Burgers et al. (1998), several

studies had already implemented ensemble-based Kalman Filters without perturbed obser-

vations and found no obvious problems (Evensen 1994; Evensen and van Leeuwen 1996;

Evensen 1997). The fact that the non-perturbed EnKF can give state estimates almost as

good as the perturbed EnKF, even though it is not optimal and has biased analysis error
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covariances, does not seem to be appreciated in the literature.

In some contexts, underestimation of analysis errors can have benefits that outweigh the

negative effects associated with suboptimal filter performance. For instance, consider the

assimilation of conserved quantities (e.g., water or energy). For the kinds of conservation laws

that appear in geophysical applications, conserved quantities do not remain conserved after

assimilation; moreover, the degree of imbalance invariably increases when the observations

are perturbed. The resulting imbalance can be critical for some land data assimilation

applications (Pan and Wood 2006; Yilmaz et al. 2011). In such cases, suboptimal schemes

that avoid perturbed observations might be preferable to optimal schemes that perturb

observations, especially if the suboptimal schemes have smaller imbalances.

Recently, Yilmaz et al. (2011) proposed new filter schemes in which the water budget is

weakly constrained and the water imbalance (or equivalently the soil moisture state update)

is reduced. One of these schemes is a variant of the traditional EnKF, called the Weakly

Constrained Ensemble Kalman Filter (WCEnKF; Yilmaz et al. 2011). The question arises as

to whether the water imbalance produced by the EnKF and the WCEnKF can be reduced by

not perturbing observations. This paper investigates the effect of not perturbing observations

in the EnKF and WCEnKF on water imbalance and state errors. Results show that not

perturbing observations consistently reduces the water imbalance while negligibly changing

the state errors.

The standard EnKF and the WCEnKF, as well as their non-perturbed variants, are dis-

cussed in the next section. Section 3 briefly reviews the models and performance metrics used

to compare filters, section 4 presents the results, and section 5 summarizes our conclusions.
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2. Ensemble Filters

We consider two classes of ensemble filters in this study: the Ensemble Transform Kalman

Filter (ETKF; Bishop et al. 2001), and the Ensemble Kalman Filter (EnKF; Burgers et al.

1998). In both filters, the best estimate of the state, called the analysis, is

µa = µf + K(o−Hµf ), (1)

where µf is the ensemble mean forecast, o is the observation vector, H is the interpolation

operator that maps the forecast into observation space, and K is the Kalman Gain matrix.

The ensemble of anomalies about µa, denoted by the matrix Xa, are generated differently

in the two filters. In the ETKF, the analysis anomalies are generated by

Xa = XfA, (2)

where A is a suitably chosen transformation matrix. In the EnKF, analysis anomalies are

generated by

Xa = Xf + K (o′ −HXf ) , (3)

where o′ denotes “perturbed observations”. Note that the symbol Xa is used to represent

the analysis anomalies regardless of filter.

In standard Kalman Filters, the solutions can be found equivalently by minimizing a cost

function that is dependent on the differences between the model forecast and the updated

analysis, and between the observations and the updated analysis. In the constrained filter,

the solution is sought by minimizing a cost function that includes a penalty function that

also depends on the amount of imbalance created by the state update.
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In the strongly constrained filter the water balance is closed perfectly. This perfect bal-

ance is accomplished by redistributing water to different components based on the degree

of uncertainty in the components. However, if the errors in any of the water balance com-

ponents are large, then these large errors would be redistributed to the other terms too,

resulting in potentially unrealistic simulations. Such an example is given in Yilmaz et al.

(2011). In the weakly constrained filter, the penalty term is weak in the sense that the water

balance is not closed exactly and a residual is allowed, acknowledging the presence of errors

in the water balance closure. The weak constraint may be preferable to the strong constraint

when the terms in the balance have large errors, since the strong constraint preserves errors

in the water balance closure.

Yilmaz et al. (2011) proposed new versions of the above filters in which a water budget

constraint is imposed in the assimilation procedure. These filters differ from the constrained

filters proposed by Simon and Chia (2002) and Pan and Wood (2006) in that the water

budget is weakly constrained. The ensemble mean water budget equation can be expressed

as

β − cTx = 0, (4)

where β depends both on non-prognostic hydrological variables at current timestep (e.g.,

precipitation, evaporation, and runoff) and on prognostic variables at previous timestep

(soil variables), c is a unit conversion vector, and x is the state. Model forecasts already

satisfy the water balance (4) in an individual sense and in an ensemble mean sense. The

weakly constrained filter is designed to produce analyses that more closely satisfy water

balance than unconstrained filters. In the weakly constrained filters proposed by Yilmaz

5



et al. (2011), the best estimate of the state is

µa = µf + PaH
TR−1(o−Hµf ) + Pacϕ

−1(β − cTµf ) (5)

where Pa is the sample covariance matrix of the analysis anomalies Xa (which differs for

the different filters), R is observation error covariance matrix, and ϕ is the error variance of

β′ (deviations about ensemble mean β). We note that the last additive term in (5) vanishes

because of (4); but we retain it for clarity in some terms below. The analysis anomalies

of the weakly constrained ETKF (WCETKF) and weakly constrained EnKF (WCEnKF)

differ. In the WCETKF, the analysis anomalies are derived from an equation of the form

(2), except with a different transformation matrix A that depends on the constraint. In the

WCEnKF, the analysis anomalies are

Xa = Xf + PaH
TR−1(o′ −HXf ) + Pacϕ

−1(β′ − cTXf ), (6)

For further details, see Yilmaz et al. (2011).

This paper compares the above filters with modified EnKFs in which observations are not

perturbed. We also consider suppressing anomalies in the constraint term, or equivalently,

using only the ensemble mean constraint term in the update equation. (Just to be clear,

we do not perturb the constraint terms in this paper.) The proposed filters are suboptimal

in the sense that they underestimate the analysis error covariances, but are expected to

have smaller water budget residuals since imbalances caused by random perturbations are

removed. Accordingly, we consider the Ensemble Kalman Filter with no perturbed observa-

tions, denoted EnKF-noPO (Whitaker and Hamill 2002), whose analysis anomalies are

Xa = Xf + KHXf . (7)
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We also consider the Weakly Constrained Ensemble Kalman Filter with no perturbed ob-

servations, denoted WCEnKF-noPO, whose analysis anomalies are

Xa = Xf −PaH
TR−1(HXf ) + Pacϕ

−1(β′ − cTXf ). (8)

In addition, we consider the Weakly Constrained Ensemble Kalman Filter with no constraint

anomalies, denoted, WCEnKF-noCA, whose analysis anomalies are

Xa = Xf + PaH
TR−1(o−HXf ) −Pacϕ

−1(cTXf ). (9)

Finally, we consider the Weakly Constrained Ensemble Kalman Filter with no perturbed

observations and no constraint anomalies, denoted WCEnKF-noPO-noCA, whose analysis

anomalies are

Xa = Xf −PaH
TR−1(HXf ) −Pacϕ

−1(cTXf ). (10)

In sum, there are a total of eight filters considered in this paper, four of them (7:10) based

on some form of “no perturbations.” These filters are briefly summarized in table 1. In this

paper, we have compared the above described eight filters under different ensemble size and

assimilation frequency selection scenarios. Special emphasis is given to the comparison of

the state error and the water balance residual magnitudes under the different scenarios.

The fact that observations are not perturbed should not be construed as an assumption

that observations are perfect. In both the perturbed and the non-perturbed case, observa-

tion errors are taken into account in the Kalman Gain, which in turn produces the correct

mean analysis. The lack of perturbed observations only implies that the analysis spread is

underestimated.
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3. Simulations and Analysis

a. Experiment Setup

Separate simulations were performed for each of the above described 8 filters (ETKF,

WCETKF, EnKF, EnKF-noPO, WCEnKF, WCEnKF-noPO, WCEnKF-noCA, and WCEnKF-

noPO-noCA). The setups of the experiments in this study were identical to the setups de-

scribed in the study of Yilmaz et al. (2011). Briefly, synthetic experiments were performed

using Noah model (Ek et al. 2003) version 2.7. The study area was chosen as Oklahoma,

US (between 32.0◦N − 37.0◦N and 96.0◦W − 91.0◦W) with 0.125◦spatial resolution. The

simulations were performed between April − October 2006. North America Land Data As-

similation (NLDAS; Cosgrove et al. 2003) data were used as the atmospheric forcing. Model

grid spatial resolutions were selected consistent with the forcing data, so that no averaging

or downscaling was needed. Initial states were obtained after spinning up the model for 10

years. Ensembles were created by perturbing initial states of temperature and soil mois-

ture, and perturbing forcing data based on precipitation, air-temperature, and shortwave

and longwave radiation, as described by Yilmaz et al. (2011).

The “truth” is identified with a single solution of the model with unperturbed initial

conditions and forcing. The “open loop” is defined as the ensemble of simulations with

the same perturbed forcing as the assimilation simulations, but without assimilation of ob-

servations (Yilmaz et al. 2011). “Observations” are generated by adding random variables

with covariance matrix R to the truth states. “Perturbed observations” are generated by

perturbing the observations in the same way.

Observations of four layers of soil moisture and four layers of soil temperature were assim-
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ilated. For initial assessments, observations were assimilated once a day using 50 ensemble

members. Later, for sensitivity analysis, observations were assimilated at assimilation fre-

quencies changing hourly to daily using ensemble sizes changing from 10 to 150.

b. Performance Metrics

Due to the time interval selection (April-October, no snow), snow related variables were

effectively not updated; hence snow related results were not investigated and will not be

presented in this study. Root mean square error (RMSE) of ensemble means for each SM

and ST layer and for each of 9 experiments were calculated as

RMSE.SMi =

√√√√ 4∑
sm

39∑
lat

39∑
lon

∑
t

(SMs i lon lat t − ˆSM s i lon lat t)2/(4500 ∗ 4 ∗ 39 ∗ 39))

(11)

RMSE.STi =

√√√√ 4∑
st

39∑
lat

39∑
lon

∑
t

(STs i lon lat t − ŜT s i lon lat t)2/(4500 ∗ 4 ∗ 39 ∗ 39)) (12)

where ˆSM and ŜT are the true SM and ST states, s is each soil layer (total 4), i identifies the

experiments (open loop and 8 filters defined above, total 9), lon is longitude pixel number

(total 39), lat is latitude pixel number (total 39), and t is each time step (total 4501).

r = β − cTxa (13)

The water balance residuals (13) were calculated for each ensemble member, at each assimi-

lation time step, at each pixel in the study area, and for each set of experiments separately.

In this study, the ensemble mean, the time mean, and the time variance of the residuals are
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calculated as:

ri lon lat . t =
∑
n

ri lon lat n t/N (14)

ri lon lat . . =
∑
t

ri lon lat . t/ats (15)

σ2ri lon lat =
∑
t

(ri lon lat . t − ri lon lat . .)
2/(ats− 1) (16)

where the “dot”denotes an index that is averaged out, σ2r is the residual variance, n denotes

ensemble member, and ats is the total number of assimilation time steps (4501 and 187 for

hourly and daily update scenarios respectively), where only the residuals due to assimilation

of observations were included in the residual statistics. Then σ2ri lon lat values were averaged

over the study area into single number (σ2ri . .) for each experiment separately.

Residuals (ri lon lat . t) can be thought as the ensemble mean soil storage update by the

filter or equally thought as the ensemble mean of the water budget imbalance from the

beginning to the end of the assimilation window. In practice, the “truth” is never known for

the purpose of calculation of the “true” error; however in this context it is known that the

“truth” has 0 residual (perfect water balance closure).

Soil water content change due to model integration alone, for 8 filters before the analysis

is updated with observations, was calculated as:

mwci lon lat . t =
∑
n

mwci lon lat n t/N (17)

mwci lon lat . . =
∑
t

mwci lon lat . t/ats (18)

σ2mwci lon lat =
∑
t

(mwci lon lat . t −mwci lon lat . .)
2/(ats− 1) (19)

where mwc is the model water content change at each time step, and σ2mwc is its variance.
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Similar to the residual variance metric, a single averaged mwc variance value (σ2mwci . .)

was calculated for each experiment separately.

c. Significance Tests

The degree of performance change between filters with perturbed and non-perturbed

observations was assessed by a series of F-tests using daily residuals (total 187 for each filter

and pixel). Residual variance ratios of filters were calculated per pixel as:

V arRatio1lon lat = σ2rEnKFlon lat
/σ2rEnKF−noPOlon lat

(20)

V arRatio2lon lat = σ2rWCEnKFlon lat
/σ2rWCEnKF−noPOlon lat

(21)

V arRatio3lon lat = σ2rWCEnKF−noCAlon lat
/σ2rWCEnKF−noPO−noCAlon lat

. (22)

The residual improvement is counted as significant if V arRatio at any given pixel is higher

than the critical F-value. The one-tailed F-test critical value at the 5% significance level for

186 degrees of freedom (d.o.f.) is 1.27.

The above F-test configuration assumes that the residuals are independent in time. How-

ever, any significant autocorrelation in the daily residuals may decrease the d.o.f. and thus

requires a new F-test. Separate d.o.f. were calculated to reflect this temporal relation.

Autocorrelations of the residuals were calculated for each pixel and filter separately. De-

correlation time scale (Shukla and Gutzler 1983), where no significant autocorrelation is

assumed for longer time lags, was calculated as

dts = 1 + 2
20∑
k=1

ρk (23)

where dts is the de-correlation time-scale, k is the time lag, and ρk is the correlation at k
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time lag. Using this time scale, new adjusted degrees of freedom was calculated for each

pixel and filter separately as

dofe =
187

dts
− 1 (24)

where dofe is the number of effective degrees of freedom and dof is the non-adjusted degrees

of freedom (187). Two sets of F-tests were performed using dofe and dof respectively for

each of these three filter pairs and pixels. Then, for each of these sets, percentage of pixels

that has significant residual improvement was calculated.

4. Results

The RMSE of soil temperature and soil moisture for all eight assimilation schemes, as well

as for the observations and open loop, are shown in Figure 1. We see immediately that the

errors of the different assimilation schemes are comparable to each other, and less than those

of observations or the open loop. As anticipated, the errors for the non-perturbed EnKF

schemes (EnKF-noPO, WCEnKF-noPO, WCEnKF-noCA, or WCEnKF-noPO-noCA) tend

to be larger than those of their perturbed counter parts (EnKF or WCEnKF). Nevertheless,

for most practical purposes, the error differences between assimilation schemes are indistin-

guishable.

At any given assimilation time step (when observations are available), total soil water

content change is equal to summation of the change due to the model integration alone and

the change due to the state update as a result of assimilation of observations only (namely

residuals, eq. 14). The variance of the model only water change (19) and the residual (16)
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for all eight assimilation schemes, as well as the truth and open loop, are shown in Figure 2.

Since the truth and open loop conserve water exactly at each time step, the residual vanishes

and hence has zero variance. In this figure, residual variances remained much higher than the

variance of the model water change for all 8 filters (red bars -residuals- are much higher than

the green bars -water change due to model only-); residuals dominate the total soil water

content change (red bars + green bars) when observations are assimilated daily. The figure

also shows that residual variances of the standard ETKF and EnKF are larger than that

of either the weakly constrained or non-perturbed EnKF schemes. Among these residual

improvements, EnKF improvements were significant 66% of the time when dof is used and

38% of the time when dofe is used; WCEnKF and WCEnKF-noCA improvements were

significant 1%-3% of the time when dof or dofe is used. Furthermore, the residual variance

of the non-perturbed filters is consistently less than the residual variance of their perturbed

counterparts regardless of its significance; residual variances were improved 100%, 100%,

and 98% of the time for EnKF, WCEnKF, and WCEnKF-noCA when observations are not

perturbed. The fact that the improvements for the constrained filters are less significant than

the unconstrained filters is not surprising since the constrained filters explicitly constrain

the water balance residual to be small. On the other hand, 6 month cumulative residuals of

non-perturbed filters (EnKF-noPO, WCEnKF-noPO, and WCEnKF-noPO-noCA) were only

marginally (1-2%) improved when compared to their perturbed pairs (EnKF, WCEnKF, and

WCEnKF-noCA). In short, suppressing perturbations in the EnKF consistently improves the

water budget residual without significantly increasing the state errors.

To test the sensitivity of the above results, we repeated the above experiments for a range

of ensemble sizes and observation frequency. The results, presented in Figure 3, consistently
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support the conclusion that filters without perturbed observations (or constraint anomalies)

produce smaller budget residuals than their perturbed counterparts (in graphical terms, the

symbols for the non-perturbed filters are shifted to the left of those for the perturbed filters).

It is interesting to note that ensemble size has relatively little effect on the residual variance.

Although the soil moisture errors tends to decrease with increasing ensemble size, this is not

always the case. In general, more frequent observations resulted in smaller residuals and soil

moisture errors.

One anomalous result is worth noting: the residuals of the EnKF for hourly observations

increased dramatically with ensemble size (red stars in top left panel of Figure 3). This

sensitivity is substantially reduced when the filter is weakly constrained, and disappears

altogether when observations are not perturbed. This behavior, which was not seen in

square root based filters (ETKF and WCETKF), was investigated extensively, including

attempts to recreate the behavior with simple auto-regressive models, but no satisfactory

explanation could be found.

5. Conclusions

This paper investigated the use of “non-perturbed” Ensemble Kalman Filters in land

data assimilation. Although these filters are suboptimal compared to the standard Ensem-

ble Kalman Filters, in the sense that they underestimate the analysis errors, they produce

smaller budget errors of conserved quantities due to the absence of artificial random pertur-

bations. A total of eight data assimilation schemes were investigated (see table 1), four of

them being “non-perturbed” variants of previously proposed schemes. The major finding of
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this study is that suppressing perturbations in the EnKF significantly improves the water

budget residual without significantly increasing the state errors. This finding was shown to

be independent of ensemble size or observation frequency.

This improvement in the residual is expected for the following reason. Suppressing the

perturbations in observations leads to generally smaller analysis updates. A smaller incre-

ment implies that the analysis is closer to the forecast, which in turn has zero residual because

the forecast model maintains water balance exactly. Note that suppressing perturbations on

the observations has no effect on the mean increment at the current time step, but it reduces

the analysis spread at the current time step and subsequently reduces the mean analysis

increment at the next time step.

The issue of not perturbing the observations, particularly the fact that earlier stud-

ies (Evensen 1994; Evensen and van Leeuwen 1996; Evensen 1997) had found no obvious

problems in using non-perturbed sub-optimal filters, have been discussed previously. Both

Burgers et al. (1998) and Whitaker and Hamill (2002) speculated that in oceanography the

observation errors are much smaller than forecast errors and therefore there is relatively

little difference between the perturbed and unperturbed cases. In the case of land data

assimilation, however, we believe there is another relevant fact; land models are strongly

dependent on the forcing (eg. precipitation). As a result, forecast spread tends to be a

stronger function of forcing spread than on initial condition spread. This strong dependence

on forcing perhaps makes the perturbed observations less critical in land data assimilation

than in atmospheric or oceanographic data assimilation. This dependence also may explain

why inflation of the forecast covariance described by Anderson and Anderson (1999) usu-

ally is not needed in land data assimilation studies as much as in the atmospheric and the

15



oceanographic data assimilation applications.

Acknowledgments.

We thank anonymous reviewers for their constructive comments, which led numerous

clarifications in the final version of the manuscript. Support is gratefully acknowledged

from grants from the NSF (0830068), the National Oceanic and Atmospheric Administration

(NA09OAR4310058), and the National Aeronautics and Space Administration (NNX09AN50G

and NESSF09Earth09R80).

16



REFERENCES

Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Monthly Weather

Review, 129, 2884–2903.

Anderson, J. L. and S. L. Anderson, 1999: A monte carlo implementation of the nonlin-

ear filtering problem to produce ensemble assimilations and forecasts. Monthly Weather

Review, 127 (12), 2741–2758.

Bishop, C. H., B. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble

transform kalman filter. part i: Theoretical aspects. Monthly Weather Review, 129, 420–

436.

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis Scheme in the Ensemble

Kalman Filter. Monthly Weather Review, 126, 1719–1724.

Cosgrove, B. A., et al., 2003: Real-time and retrospective forcing in the north american land

data assimilation system (NLDAS) project. Journal of Geophysical Research, 108 (D22),

8842.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayand, and J. D.

Tarpley, 2003: Implementation of noah land surface model advances in the national cen-

ters for environmental prediction operational mesoscale eta model. Journal of Geophysical

Research, 108 (D22), 8851.

17



Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model

using monte carlo methods to forecast error statistics. Journal of Geophysical Research,

99 (C5), 10 143–10 162.

Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Monthly

Weather Review, 125 (6), 1342–1354.

Evensen, G. and P. J. van Leeuwen, 1996: Assimilation of geosat altimeter data for the

agulhas current using the ensemble kalman filter with a quasigeostrophic model. Monthly

Weather Review, 124 (1), 85–96.

Houtekamer, P. L. and H. L. Mitchell, 1998: Data Assimilation Using an Ensemble Kalman

Filter Technique. Monthly Weather Review, 126, 796–811.

Pan, M. and E. F. Wood, 2006: Data assimilation for estimating the terrestrial water budget

using a constrained ensemble kalman filter. Journal of Hydrometeorology, 7 (3), 534–547.

Shukla, J. and D. S. Gutzler, 1983: Interannual variability and predictability of 500 mb

geopotential heights over the northern hemisphere. Monthly Weather Review, 111, 1273–

1279.

Simon, D. and T. L. Chia, 2002: Kalman filtering with state equality constraints. IEEE

Transactions on Aerospace and Electronic Systems, 38 (2), 128–136.

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003:

Ensemble square-root filters. Monthly Weather Review, 131, 1485–1490.

18



Whitaker, J. and T. M. Hamill, 2002: Ensemble Data Assimilation Without Perturbed

Observations. Monthly Weather Review, 130, 1913–1924.

Yilmaz, M. T., T. Delsole, and P. R. Houser, 2011: Improving land data assimilation per-

formance with a water budget constraint (in press). Journal of Hydrometeorology.

19



List of Tables

1 Summary of modified filters 21

20



Table 1. Summary of filters and their distinctive analysis anomaly properties. O′ denotes
presence of perturbed observations and B′ denotes the presence of constraint anomalies. A
dash means the particular anomaly does not apply for that filter, 3 means the anomaly
exists in the solution, and X means the anomaly is not used in the solution.

O′ B
′

ETKF - -
WCETKF - -
EnKF 3 -
EnKF-noPO X -
WCEnKF 3 3

WCEnKF-noPO X 3

WCEnKF-noCA 3 X
WCEnKF-noPO-noCA X X
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Fig. 1. SM and ST RMSE of observations, open loop, and ETKF, WCETKF, EnKF,
EnKF-noPO, WCEnKF, WCEnKF-noPO, WCEnKF-noCA, and WCEnKF-noPO-noCA fil-
ters (assimilating daily SM and ST observations with 50 ensemble members). ST errors are
shown in blue color on left y-axis and SM errors are shown in red color on the right y-axis.
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Fig. 2. Residual variances (16) for various filters (assimilating daily SM and ST observations
with 50 ensemble members; shown in red bars); and model water change variances (19) for
various filters, truth, and open loop simulations (shown in green bars).

24



Fig. 3. Sensitivities of the 8 filter residuals and the SM errors to the ensemble size and
the assimilation frequency. Each panel represent a different filter; each color in each panel
represent a different assimilation frequency varying from hourly to daily; and points with
the same color and symbol represent a simulation with a different ensemble size (10, 15, 20,
30, 50, 80, 120, and 150), where the ensemble size increases with the increasing symbol size.
All simulations are performed with both SM and ST observations were assimilated.
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